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Abstract—This paper investigates maximizing quality of in-
formation subject to cost constraints in data fusion systems.
We consider data fusion applications that try to estimate or
predict some current or future state of a complex physical world.
Examples include target tracking, path planning, and sensor
node localization. Rather than optimizing generic network-level
metrics such as latency or throughput, we achieve more resource-
efficient sensor network operation by directly optimizing an
application-level notion of quality, namely prediction error. This
is done while accommodating cost constraints. Unlike prior cost-
sensitive prediction/regression schemes, our solution considers
more complex prediction problems that arise in sensor networks
where phenomena behave differently under different conditions,
and where both ordered and unordered prediction attributes
are used. The scheme is evaluated through real sensor network
applications in localization and path planning. Experimental
results show that non-trivial cost savings can be achieved by
our scheme compared to popular cost-insensitive schemes, and
a significantly better prediction error can be achieved compared
to the cost-sensitive linear regression schemes.1

I. INTRODUCTION

This paper investigates the trade-off between data collec-
tion cost in sensor networks and application-level quality of
information. We are interested in sensor networks, where the
mission is to predict or estimate some current or future state
of the physical world. Target tracking (estimation of target
locations in the physical world), localization (estimation of
node locations in the physical world), and minimum expo-
sure routing (estimation of minimum-threat routes for mobile
entities through the physical world) are examples of possible
application goals.

Our work complements previous research in sensor net-
works, where base-stations estimate sensor measurements.
Previous work developed mechanisms to reduce the number of
measurements that need to be reported while still being able
to accurately estimate missing measurements [29], [10], [5],
[1], [2], [32], [39]. In contrast, this paper considers estimation
of variables that are not directly measured. For example, the
location of a target, computed from multi-lateration, may not
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be directly measured by any single sensor. Rather, it results
from processing individual sensor measurements (such as esti-
mated distance from the target). In such applications, a model
exists to derive the variable of interest. We shall call it the
prediction model (using this term loosely to cover estimation
and regression models as well). Raw sensor measurements, or
features derived from such measurements, are inputs to that
model. Hence, the input parameters of the model determine the
cost of data collection. Models that have more parameters (or
parameters that are more expensive to measure or compute)
increase data collection cost [40]. This observation motivates
our work on models that minimize cost.

Our paper substantially improves the inherent trade-off be-
tween modeling accuracy and cost of data collection in sensor
networks. Normally, more accurate models involve more input
parameters, which makes them more expensive. By judiciously
replacing a complex general model with collections of simpler
specialized models for different sub-cases, our scheme can
do better both in terms of accuracy and cost; specialization
may increase accuracy, while at the same time reducing the
number of model parameters needed in the special case at
hand, hence reducing cost. The main challenge in achieving
such an improved trade-off lies in appropriately defining the
special cases and the simpler models that apply in each case,
which is the contribution of this paper.

Our scheme builds a tree whose leaves are regression
models, each applies to a subspace of the input data space (i.e.,
a special case corresponding to a tree branch). It explicitly
looks for a break-down that results in accurate yet simple
(i.e., low-cost) models at branches. This is in contrast, for
example, to using a single complex one-size-fits-all model that
takes all possible parameters into account at all times [15],
hence requiring more expensive data collection. Our modeling
scheme is hybrid in that it exploits both ordered prediction
attributes (those that have ordered values, such as integers) and
unordered prediction attributes (e.g., labels such as “Nissan”
or “Toyota”) in modeling. Our experimental results show that
non-trivial cost savings are achieved by our scheme compared
to cost-insensitive schemes, and significant improvements
are achieved in prediction error compared to cost-sensitive
schemes. Prediction costs always stay within budget.

We restrict our analysis to models that do not change
quickly. For example, the average accuracy and energy cost
of a particular localization algorithm in a given deployment



environment is not likely to change much over time [20].
Similarly, the relation between estimated fuel consumption of
a car and various road, trip, and vehicle parameters is likely
to remain the same, governed by laws of physics [14]. Once
these models are learned, they can be exploited for a long time
before re-learning is necessary. Hence, we do not consider
the cost of model learning itself (although this would be a
straightforward extension). While the models we consider are
static, the environment need not be. Since our models are
defined at leaves of a tree, different branches may be used
for prediction under different environmental conditions.

The rest of this paper is organized as follows: we present the
related work in Section II. The proposed hybrid cost-sensitive
prediction scheme is discussed in Section III. Implementation
and evaluation results are presented in Section IV. Finally, we
conclude the paper in Section V.

II. RELATED WORK

Our work is complementary to two important directions
in sensor network literature. The first describes techniques
for minimizing the sensor data sent to a base-station while
estimating missing sensor measurements [10], [5], [28]. In
contrast, we concern ourselves with estimation of parameters
that are not directly sensed. Hence, ours is the more general
problem of developing prediction models for data fusion
outputs (that are both accurate and cheap), as opposed to
prediction models for individual sensor values. The second
relevant body of work in sensor networks develops in-network
protocols that take advantage of data models in order to
optimize network communication cost [29], [1], [2], [32], [39].
This includes reliability [1], congestion control [2], and data
suppression [32], [39] protocols. The problem we address is
orthogonal to the above. Rather than being concerned with
how the sensory data are aggregated and processed in the
network, we discuss which sensors or data attributes should
be collected or computed in the first place. Eliminating some
data attributes from the model may reduce communication
requirements or reduce the amount of processing required to
calculate model inputs.

An advantage of our technique is that it produces models
that are cost-sensitive (i.e., cost does not exceed a predefined
budget). Several previous efforts on cost-sensitive classifi-
cation and active feature-value acquisition addressed some
notion of cost [37], [40], [33], [19], [25], [26], [31]. They differ
in the type of costs considered, the modeling approach applied,
and the nature of the training set. For example, Tan [37]
selects sensors on a robot to control grasping, taking into
account execution costs. Turney accommodates both the cost
of attributes and misclassification [40]. A partially observable
Markov decision process is used in [19]. Melville and Saar-
Tsechansky study the active feature-value acquisition problem
in the context of incomplete training data [25], [26], [31].
A common property of the above cost-sensitive schemes is
that they build classifiers that predict discrete class labels.
In contrast, our work focuses on a cost-sensitive regression
problem, where the leaves of the classification tree hold

complete regression models, not class labels. In principle,
attribute discretization can convert regression problems into
classification problems. However, the accuracy and scalability
of this approach may vary with scheme [13], [9]. Our scheme
is the first to build classification trees with cost-sensitive
regression models at the leaves.

Our work also bears resemblance to active learning; a useful
technique from the machine learning community in which the
learner has the freedom to choose the most informative training
set when the resources to obtain data samples are limited [30],
[33]. In contrast, our work focuses on the problem of cost-
sensitive data attributes selection which is orthogonal to the
sample selection problem mentioned above.

Non-cost-sensitive classification and regression techniques
were used to extract models embedded in datasets and predict
future data trends [18], [6], [38]. The literature on such
algorithms is quite mature [22], [11], [4]. Attribute selection
and tree pruning are two key techniques used to choose the
right prediction attributes that best separate a given dataset into
individual subspaces and build up a reliable regression model
in each subspace [23], [34], [6], [7]. Our work is different in
that it addresses cost concerns when data must be collected and
processed over a resource-scarce environment such as a sensor
network. Moreover, unlike decision trees that split the dataset
in a way that maximizes an information gain metric [18], [7],
[40], we use prediction accuracy of regression models as the
measure to construct the tree.

An approach that comes close to ours is that of cost-
sensitive regression by Geoetschalckx [15]. However, it as-
sumed a single linear regression model that jointly minimizes
a weighted function of prediction error and feature cost. As
shown in the evaluation, by using a tree of regression models
(automatically customized to different cases), we are able to
achieve a better trade-off between modeling accuracy and data
collection cost. Data cubes are another common techniques to
handle large data sets with multiple dimensions efficiently for
aggregation or prediction purposes [8], [12]. However, current
cubes organize data by unordered (or categorical) attributes.
We show in the evaluation that removing this restriction we
offer a better trade-off between accuracy and cost.

III. COST-SENSITIVE PREDICTION

Consider a sensor network that measures or computes
multiple data attributes x1, x2, ...xd, from the physical world
to estimate or predict an output, y, of interest (e.g., the location
of a target). We call d the dimension of the dataset. The
ith sample of attribute xj is denoted by xi,j , and the ith
sample of output y is denoted by yi. Further, let ŷ denote
the estimate of y. A cost cj is associated with measuring or
computing data attribute xj per unit time. The goal is to build
a model that minimizes prediction error of y, while keeping
the cost of obtaining its input within a budget constraint,∑

j∈used cj ≤ CB . In general, there may be more than one
resource to consider, in which case CB is a vector. The
prediction error is given by:

Err = f(yi − ŷi) (1)



where f is monotonically increasing. The model is to be built
given a set of N samples SN = (YN ,XN ), where each data
sample i(1 ≤ i ≤ N) is a tuple (ysensei , xi,1, xi,2, ...xi,d), and
where ysensei is an actual measurement of y.

Below, we first introduce the multi-model linear regression
methods for prediction in complex non-linear data spaces. We
then propose a hybrid cost-sensitive prediction model to solve
the problem discussed above.

A. Hybrid Model Tree

Consider building a tree where intermediate nodes repre-
sent decision attributes, and leaves correspond to appropriate
regression models. More formally, let the whole data space
consist of L data subspaces (S1, S2, ...SL). In each subspace,
the output variable is related to the data attributes by a linear
model given by:

Yk = Xkηk + εk (2)

where Yk and Xk are the output variable and data attributes
of data samples in the kth subspace respectively, and ηk
represents the linear model of the subspace, εk is a zero mean
noise with variance σ2 that is not correlated with Xk.

For each subspace, the linear model (2) can be estimated
by applying a standard regression method on training data to
predict future output given data attributes in the subspace [17]:

Ŷk = Xkη̂k

η̂k = (XT
k Xk)−1XT

k Yk (3)

where the Ŷk is the predicted value of output variable Yk and
η̂k is the estimated regression parameter vector for subspace
Sk.

We use the mean square error of a regression model as the
measure of accuracy of the model similar to the traditional
regression methods. However, we provide a particular relia-
bility measure for the calculated mean square error later in
Section III-C. Formally, the residual sum of squared errors for
a subspace k is defined as follows:

Errk =
∑
i∈k

(yi − ŷi)2 = (Yk −Xkη̂k)T (Yk −Xkη̂k) (4)

Note that, a data attribute xj , used in some subspace Sk, can
either belong to the attribute set used for regression modeling
in this subspace, called the prediction set Dk

p , or used along
the decision tree to decide that subspace Sk is the one to use
for prediction in the first place. The set of decision attributes
on nodes leading to the subspace leaf is called the splitting
attribute set Dk

s . The cost of prediction at subspace Sk, called
Ck, therefore satisfies:

Ck =
∑

j∈Dk
p∪Dk

s

cj ≤ CB k = 1, 2...L (5)

In order to optimize the prediction accuracy of the output
variable, two problems need to be solved: 1) How to divide the
whole data space S into an appropriate set of subspaces using
only information from data attributes? 2) In each subspace,

which data attributes are the best (in terms of accuracy) to
use to build up the linear regression model of Equation (3)?

A simplified hybrid model tree is shown in Figure 1. Note
that, both ordered attributes (i.e., x1, x2, x5) and unordered
attributes(i.e., x3, x4) are used to split the data into corre-
sponding terminal nodes. Each terminal node represents a
subspace, where a linear regression model exists to predict the
output variable. Hence, we need to identify both the splitting
and prediction attribute sets Dk

s and Dk
p defined above to

predict at the terminal node Tk. There are two key problems
to be solved in order to build up such a hybrid model tree: 1)
which attribute to use to split the data at each intermediate
node (e.g., A1 ∼ A5) of the tree, and what termination
condition to use at branches of the tree (e.g., T1 ∼ T8)?

Fig. 1. A simple hybrid model tree

The search space of the optimal solution for the first
problem is exponential [16]. Instead, we apply a greedy
suboptimal solution. The main idea is to find the best splitting
attribute in each step in the sense of maximizing the error
reduction between a parent node and all its direct children.
Therefore, we first search through all possible data attributes
available at an intermediate node i, try to use each of them to
split the dataset of node i, then calculate the error reduction
∆Erri = Erri −

∑
j∈i′s childErrj and select the one with

the maximum ∆Erri as the splitting attribute of node i.
Both ordered and unordered attributes are considered as

the splitting attribute at an intermediate node. For unordered
attributes, they are usually categorical, we split data according
to their categories. For ordered attributes, we categorize their
values into ν bins, the midpoint in each bin is considered as a
possible split-point. Given ν categorized bins of xs, ν possible
splits are evaluated.

For the question of proper termination condition, we use
a two-fold condition to solve the problem. First, a node is
claimed as a terminal if no more error reduction occurs by
splitting it. In other words, if ∆Erri ≤ 0, we claim node
i as a terminal node. Second, it is a terminal if too few
samples remain in a subspace for reliable regression model
construction to occur after splitting. This is due to the high
dimensionality of the data space. A reliable model is the one
that remains sufficiently accurate over the input range. We
define a reliability condition given by (6) in order to have
enough data for building reliable regression models at terminal



nodes.
Pr[||η̂i − ηi|| > δ] < 0.05 (6)

where η̂i and ηi are the estimated and actual parameters of the
regression model at node i, δ is the confidence interval and
||x|| denotes the l2 norm of vector x. In our scheme, we use
a probability threshold of 0.05 to identify whether a terminal
node is reliable or not. To capture the effect of scaling in ηi,
we set δ =‖ η̂i ‖. An upper bound can be easily computed
by using Markov inequality for the probability defined in the
reliability condition above. The upper bound is given by:

Pr[||η̂i − ηi|| > δ] ≤ kσ2

δ2λmin(XT
i Xi)

(7)

where k is the number of data attributes, σ2 is the estimation
error variance that can be estimated from the mean square error
of the regression [24], λmin denotes the minimum eigenvalue
of a matrix and the Xi is the matrix formed by data attributes
of node i. Observe that using only data information contained
in a node, the above upper bound can be easily computed
efficiently. The details of derivation and computation of this
upper bound are discussed in [17]. If we cannot ensure that all
of node i’s children are reliable, we stop at node i and claim
it as a terminal node.

B. Hierarchical Cost Pruning

Given a cost budget for data attributes available for predic-
tion, as discussed in Section III, it is important to ensure that
the prediction cost at all terminal nodes of the tree always stays
within budget. Briefly, first, we try to reduce the number of
prediction attributes used at leaves. We call it intra-node cost
pruning. It reduces the prediction cost by removing redundant
and less important prediction attributes from terminal nodes
of the tree. Classical algorithms are available for attribute
reduction in a single linear regression model. Examples are
forward/backward attribute selection [16] and decision tree
methods [7]. The intra-node cost pruning at a terminal node
stops when we find a valid reduced set of prediction attributes
that moves the terminal into the cost budget while still keeping
the regression model reliable. Alternatively, we stop when we
are not able to find such a reduced prediction set after the
prediction set becomes empty or the prediction model at the
terminal node becomes unreliable. One constraint in choosing
prediction attributes to remove is that it does not help to
remove attributes that are also used for splitting since we
would have to collect them anyway (for splitting purposes).

When a terminal node cannot meet the cost budget after
the intra-node cost pruning stops, we consider reducing the
number of splitting attributes. We call it inter-node cost
pruning, and is achieved by simplifying the tree (by pruning
leaves). A terminal node Ti will first try to prune itself in the
sense that any prediction previously done at Ti will be done
at Ti’s parent after pruning. The parent node is one level up
the tree and so has fewer splitting attributes and less cost. At
the same time, a more general regression model exists at the
parent node with less prediction accuracy which is the price
of reduced cost.

It is possible that a parent itself cannot meet the cost budget.
Hence, inter-node and intra-node cost pruning are carried out
iteratively, first reducing prediction cost of leaves then cutting
leaves out altogether until each leaf falls within budget. The
pseudocode of the above process is shown in Algorithm 1.

Algorithm 1 Hierarchical Cost Pruning Algorithm
Notation
Root: The root of the hybrid model tree
St: The set of terminals that cannot meet the cost budget
Ds: The set of splitting attributes for tree construction
Aexp: The most expensive data attribute in Ds

Tk: Terminal k in St

Tpk: Prediction node of Tk after inter-node cost pruning
Ck: Cost to predict at Tk

Cpk: Cost to predict at Tpk

CB : Cost budget

1: while St is not empty && Ds is not empty do
2: pick a terminal Tk from St

3: intra node cost prune(Tk);
4: if Ck > CB then
5: Tpk = Tk

6: while Tpk 6= Root && Cpk > CB do
7: Tpk = inter node cost prune(Tpk);
8: if Cpk < CB then
9: break;

10: end if
11: intra node cost prune(Tpk);
12: if Cpk < CB then
13: break;
14: end if
15: end while
16: if Cpk > CB then
17: exclude Aexp from Ds;
18: rebuild the hybrid model tree;
19: else
20: exclude Tk from St

21: end if
22: end if
23: end while
24: if St is empty && Ds is not empty then
25: Hierarchical cost pruning succeed
26: else
27: Cost budget CB is too small to predict reliably
28: end if

C. Reliable Bound on Prediction Error

The last step in the process is to estimate a bound on
prediction error for nodes on the tree. For any prediction task
given to a terminal node T of the hybrid model tree, the
expected prediction error can be derived as follows:

ErrE = E[(y − xη̂T )2] = E[(xηT + ε− xη̂T )2]

= E[(x(ηT − η̂T ) + ε)2] (8)

where x is the vector of predictors and y is the actual output
value of the attribute we are predicting, η̂T is the estimated
linear model of the terminal node T . Considering ε and x
are independent and ε has a zero mean, an upper bound of
prediction error at terminal node T can be derived by using
similar approaches in [3]:

ErrE ≤ E[‖ x ‖2]δ2 + σ2 (9)

From the reliability condition defined in (6) to ensure
reliable models at terminals, the regression coefficients are



expected to be in the confidence interval of δ with at least 95%
probability. Therefore, with 95% probability, the prediction
error of a terminal node T is bounded by (9), and we call this
bound 95% confidence bound on the prediction error.

D. Run-time Operation

For a real system deployment, the cost-sensitive hybrid
model tree algorithm is implemented at the base station and it
operates in two phases: an offline training phase that constructs
a modeling tree and an online prediction phase that uses the
model and the continuous stream of sensing and fusion data.
For the offline phase, we assume that a sensor network is
deployed with the capability to collect all data attributes for
prediction. A sufficiently large training sample set is obtained
for building the hybrid model tree at the base station. A cost
profile configuration file keeps the costs of collecting different
attributes. The application specifies the cost budget and the
hierarchical pruning algorithm is applied on the hybrid model
tree to prune all terminal nodes into the budget.

In the online prediction phase, the modeling backend inter-
acts with the data collection and fusion component to estimate
the output attribute. Each prediction task follows the cost-
pruned model tree and selects the splitting attributes along
the tree until it reaches its predicting terminal node, where all
prediction attributes needed for the query are collected from
the network. The prediction can be done periodically to build
a time-series estimate of the output attribute or on-demand in
response to user queries for up-to-date predictions. Remote
procedure calls create an interface between the base station
and the remote users who consume the predictions.

Upon changes in the cost model or the budget, the configu-
ration file can be updated to initiate a tree re-pruning using the
hierarchical algorithm in the online phase. For nodes deployed
in the field, they just follow the instructions generated by the
base station to collect relevant data attributes without specific
hardware or software reconfigurations.

IV. EVALUATION

A. Composable Localization Case Study

In this section, we apply the cost-sensitive prediction
scheme to the design of a cost-sensitive composable local-
ization protocol for sensor networks. Composable localization
aims are localizing nodes in realistic, complex, outdoor en-
vironments of sensor networks [36] using the “best-of-breed”
protocol for each environment, or the best mix of different
protocols. Running multiple localization protocols, rather than
one, on sensor nodes provides robustness of localization to
protocol-specific inefficiencies. Observe that different localiza-
tion protocols estimate node locations with different accuracies
and they run at different costs. For example, a GPS localization
scheme usually locates a node with a low localization error
(e.g., 1~2 m) but at a high cost of power consumption
(attributed to the GPS device), while DV-Hop is a distributed
localization scheme that yields less accurate node location
estimates (e.g., 4~7 m), but at a much lower cost [20], [27].
Hence, if we use outputs of different localization protocols and

conditions under which they work as data attributes (features)
to predict the actual location of a sensor node, we end up
with the same cost-sensitive prediction problem presented in
Section III. We compare the new scheme to several baseline
schemes: i) a cost-sensitive single linear regression model that
that uses all data attributes available within budget to build a
single linear regression model for the whole data space [15].
ii) regression tree prediction scheme that uses heterogeneous
attributes to build up a similar tree as the hybrid model tree,
but does not perform regression at the terminal and only uses
average value of a node as the model [6]. iii) data cube
prediction scheme that only exploits the unordered attributes to
split data space and performs regression at data cell [3]. Note
that, both regression tree and data cube are cost-insensitive
schemes.

Data attributes Type Cost(mW) Localization
error (m)

GPS Protocol Result Ordered 36 1~2
Spotlight Protocol Result Ordered 37.8 0.3~1
DV-Hop Protocol Result Ordered 8.64 4~7
Centroid Protocol Result Ordered 0.51 8~10

GPS Connectivity Unordered 12.92 N/A
Line of Sight Availability Unordered 0 N/A

TABLE I
DATA ATTRIBUTES USED IN COMPOSABLE LOCALIZATION

The mapping from outputs of different localization protocols
and conditions that affect their performance to data attributes
defined in Section III is shown in Table I. We treat outputs of
four localization protocols as the ordered data attributes since
their orders indicate node’s relative position to each other. GPS
connectivity (whether a node has a GPS signal connection or
not) and line of sight availability (whether a node has the
line of sight to the Spotlight device or not) are taken as two
binary unordered attributes (e.g., no explicit order between on
and off state). The costs (i.e., average power consumption) of
GPS and Spotlight localization protocols are computed from
averaging the energy consumption of nodes equipped with
corresponding devices over the localization period, we use
numbers reported in [20], [35]. For DV-Hop and Centroid
localization protocols, we implemented them in TOSSIM, and
the power consumption is obtained from averaging both the
energy of running localization algorithms on nodes and the
overhead of communication (i.e., sending/receiving packets
and idle listening) over the localization period [27], [21].
The cost for GPS connectivity is obtained by averaging the
energy of the GPS device working in hot start mode to get
coordinated with GPS signals over the localization period [20].
For line of sight availability, we assume such information can
be obtained at the deployment time of Spotlight system thus
has no further cost after deployment. More detailed parameters
used in the above power consumption computation are listed
in Table II. Meanwhile, estimations of accuracies of four
localization protocols reported in [36] also listed.

We consider a distributed node localization scenario in
which a set of anchor nodes, with accurate position knowledge,
are distributed in the network. A set of four representative
localization protocols, (namely, GPS [20], Spotlight [35], DV-
Hop [27] and Centroid [21]) are available to run on the nodes



Name Explanation Value
Pcpu CPU power only 11.04mW
Pgps GPS in hot start mode 170.07mW
Ptx Radio in transmit state 78.49mW
Prx Radio in receive state 74.85mW
Pls Radio in listen state 21.95mW

Plaser Diode Laser of Spotlight 35mW
Thot Time for GPS in hot start mode 3.42s
Tgps GPS localization period 45s
Tsp Spotlight localization time 40s
Rbw CC2420 transmit bandwidth 250kbps
Bhop DV-Hop message size 15 Bytes
Bhd Hop distance message size 11 Bytes
Bhl Help message size 1 Byte

TABLE II
FACTORS AFFECTING POWER CONSUMPTION OF LOCALIZATION

PROTOCOLS ON GPS-EQUIPPED MICAZ MOTES

in the network. Each anchor node is able to run a subset or full
set of four localization protocols depending on its hardware
configuration, power budget and location. We assume that
nodes in the neighborhood of an anchor run the same set of
protocols. A node in the vicinity of multiple anchors belongs
to the neighborhood of the nearest one. The anchor node will
collect results from different localization protocols and build
up a cost-sensitive hybrid model tree for location estimation
to share with all non-anchor nodes in its neighborhood, taking
into account the latter’s cost budget. The cost budget is taken
to be a cap on energy consumption of the protocol, computed
from the node’s battery capacity and desired lifetime. Non-
anchor nodes use the computed cost-sensitive model to predict
their locations.

The cost-sensitive composable localization system was im-
plemented in TOSSIM/TinyOS-2.1.1. We simulate a network
topology with 100 nodes (20 are anchor nodes) deployed in a
125m × 125m area. The nodes were randomly distributed in
the topology. The radio range was set to be 30m with a sensi-
tivity of −75dBm. The standard deviation of Additive White
Gaussian noise for radio links was set to 4dB. We assume 30%
nodes are equiped with GPS devices with 40% probability to
lose GPS signal during localization period and 50% nodes
have a line of sight with the Spotlight device [35]. All nodes
can run DV-Hop and Centroid. The system localization period
is the same as the period of the GPS protocol.

The first experiment is to show the localization accuracy
and cost trade-offs achieved by all composable localization
schemes under comparison. We fixed the cost budget (desired
average power consumption to run the set of localization
protocols on a non-anchor node) at 70mW . We run 100
experiments and record the average localization error of all
non-anchor nodes and the average power consumption of
localization process per non-anchor node over the network. As
shown in Figure 2, the proposed cost-sensitive hybrid model
tree achieves the least localization error compared to all other
schemes. The reason is that the hybrid model tree exploits
both ordered and unordered attributes to split data into more
refined subspaces and build accurate regression models for
prediction. The cost-sensitive single regression scheme has
the highest localization error due to the fact that localization
protocols perform differently under various conditions, a single

linear model can not fit all cases. Also note that data cube
achieves better localization accuracy than the regression tree
scheme by doing regression at data cells. Figure 3 reports
the average power consumption per non-anchor node of all
schemes under the cost budget of 70mW . Observe that two
cost-sensitive schemes (i.e., single linear regression and hybrid
model tree) have less power consumed than the budget while
two cost-insensitive schemes (i.e., regression tree and data
cube) consume more power than the budget. Therefore, the
cost-sensitive hybrid model tree scheme is shown to achieve
the least localization error while keeping the cost within
budget.

The second experiment is to verify the capability of the cost-
sensitive hybrid model tree to always keep the localization
cost within budget. We vary the cost budget from 30mW to
100mW , where 30mW is the minimum cost budget to have a
single reliable prediction model on a node and 100mW is the
budget to accommodate the total cost of all attributes. We run
100 experiments for each cost budget and report the CDF of
localization cost for different localization schemes. As shown
in Figure 4, the X-axis is the cost budget and every point on
the curve shows the fraction of test cases that cost less than
the cost budget. Observe that, the cost-sensitive schemes (i.e.,
single linear regression and hybrid model tree) always localize
within the cost budget. For most cases, the cost-insensitive
schemes (i.e., data cube and regression tree) however cost
more than a certain budget threshold. Also note that regression
tree scheme meets the budget at a lower cost than the data cube
scheme due to the fact that regression tree takes average rather
than builds regression models at terminal nodes. These results
verify the effectiveness of hierarchical cost-pruning algorithm
to keep the total cost of prediction always within budget for
the hybrid model tree scheme.

The third experiment is to evaluate the prediction reliability
characterized by the 95% confidence bound on prediction error
discussed in Section III-C. The 95% confidence bound on
prediction error is the error value that is guaranteed to be
larger than the actual prediction error 95% of the time. To
this end, we randomly choose a non-anchor node and predict
its location using a model of its nearest anchor node. The
cost budget is fixed at 70mW . We change the size of training
set and measure the mean square prediction error obseved
and compare it against the analytically expected prediction
error and the 95% confidence bound from Equation (9). The
results are averaged over 100 experiments. Figure 5 shows
that the expected prediction error stays closely around the
actual prediction error observed and is well bounded by the
confidence bound.

B. Green GPS Case Study
In this section, we apply our cost-sensitive hybrid model

tree scheme to a real participatory sensing application, called
GreenGPS [14]. GreenGPS gathers participatory sensing data
from drivers to predict fuel consumption of different types of
cars on different roads. For evaluation purposes, we assume
that a future GreenGPS service is installed where users (or
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rather GreenGPS devices acting on their behalf) pay for access
to road information that GreenGPS needs to predict fuel
consumption. The mapping from different parameters to data
attributes defined in Section III are listed in Table III.

Data attributes Type Cost (USD)
Number of Stop Signs Ordered 5

Number of Traffic lights Ordered 4
Average Traffic Speed Ordered 10
Traffic Speed Variance Ordered 8

Road Speed Limit Ordered 6
Road Slope Ordered 2

Car’s Weight Ordered 0
Car’s Make Unordered 0
Car’s Model Unordered 0
Car’s Year Unordered 0

TABLE III
DATA ATTRIBUTES USED IN GREENGPS APPLICATION

The first experiment is to show the prediction error and
cost trade-offs of all prediction schemes under comparison,
we fixed the cost budget to be 25 USD. Figure 6 and Figure 7
show that the cost-sensitive hybrid model tree achieves the best
prediction accuracy while keeping its prediction cost within
budget. Other baseline schemes either predict with a high error
or fail to meet the given budget. For the second experiment
to verify the cost-sensitive capability of the hybrid model tree
scheme, we vary the cost budget from 16 to 35 USD, where
the former is the minimum cost to have a single reliable model
while the latter is the total cost of all data attributes. As shown
in Figure 8, the cost-sensitive hybrid model tree scheme always
predicts within the cost budget, while data cube and regression
tree fail to meet the budget when budget is low. The third
experiment is carried out to evaluate the prediction reliability,
we randomly select samples of a road segment driven by a
given car and predict its fuel consumption from data of other
cars and segments. The budget is fixed at 25 USD. We change
the size of training set and compare the estimated mean square
prediction error against the actual prediction error observed
and the 95% confidence bound. Figure 9 shows the estimated

error is close to the actual error observed and is less than
the confidence bound. To make error values meaningful, we
have normalized fuel consumption values to be zero mean and
between -1 and 1.

V. CONCLUSIONS

This paper described a new data modeling scheme that
significantly improves the trade-off between modeling ac-
curacy and cost of data collection. This improvement was
achieved by replacing complex general models with groups
of simpler cost-sensitive sub-models specialized for different
sub-cases. Specialization allowed each sub-model to have a
lower data collection cost (e.g., fewer parameters), but a
comparable or higher prediction accuracy. A hybrid model
tree was built with the cost-sensitive sub-models at leaves to
directly optimize application-level prediction accuracy while
respecting cost constraints. An accurate confidence bound was
computed on prediction error. Experiments with real sensor
network applications showed that significant cost savings and
prediction error reduction could be achieved.

REFERENCES

[1] H. Ahmadi and T. Abdelzaher. An adaptive-reliability cyber-physical
transport protocol for spatio-temporal data. In Proc. 30th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’09), pages 238–247, 2009.

[2] H. Ahmadi, T. Abdelzaher, and I. Gupta. Congestion control for spatio-
temporal data in cyber-physical systems. In Proc. 1st International
Conference on Cyber-Physical Systems (ICCPS’10), pages 89–98, 2010.

[3] H. Ahmadi, T. Abdelzaher, J. Han, N. Pham, and R. Ganti. The sparse
regression cube: A reliable modeling technique for open cyber-physical
systems. In Proc. 2nd International Conference on Cyber-Physical
Systems (ICCPS’11), 2011.

[4] A.J.Dobson. An Introduction to Generalized Linear Models (2nd ed.).
Chapman and Hall, 2001.

[5] D. Blatt and A. Hero. Distributed maximum likelihood estimation
for sensor networks. In Proc. International Conference on Acoustics,
Speech, and Signal Processing, 2004.

[6] L. Breima, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.



 0

 5

 10

 15

 20

 25

 30

 35

 40

P
re

di
ct

io
n 

E
rr

or
 (%

)

Cost-sensitive Single Regression
Regression Tree Prediction

Data Cube Prediction
Cost-sensitive Hybrid Model Tree

Fig. 6. Comparison of Prediction Error

 0

 5

 10

 15

 20

 25

 30

 35

P
re

di
ct

io
n 

C
os

t (
U

S
D

)

Cost-sensitive Single Regression
Regression Tree Prediction

Data Cube Prediction
Cost-sensitive Hybrid Model Tree

Fig. 7. Comparison of Prediction Cost

 0

 20

 40

 60

 80

 100

 16  18  20  22  24  26  28  30  32  34

C
D

F 
(%

)

Cost Budget (USD)

Cost-sensitive Single Regression
Regression Tree Prediction 

Data Cube Prediction
Cost-sensitive Hybrid Model Tree

Fig. 8. Comparison of Cost CDF

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 100  150  200  250  300  350  400  450  500  550  600

M
ea

n 
sq

ua
re

 e
rr

or

Number of tuples

Actual Error
Expected Error

95% Confidence Bound

Fig. 9. Prediction Reliability

[7] L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey.
Knowledge Engineering Review, 12(1):1 – 40, 1997.

[8] B. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. In
Proc. VLDB’05, pages 982–993, 2005.

[9] M. R. Chmielewski and J. W. Grzymala-busse. Global discretization
of continuous attributes as preprocessing for machine learning. In
International Journal of Approximate Reasoning, pages 294–301, 1996.

[10] V. Delouille, R. Neelamani, and R. Baraniuk. Robust distributed
estimation in sensor networks using the embedded polygons algorithm.
In Proc. IPSN’04, pages 405 – 413, 2004.

[11] R. Duda, P. Hart, and D. Stork. Pattern Classification (2nd. ed.). John
Wiley and Sons, 2001.

[12] Y. C. et al. Regression cubes with lossless compression and aggregation.
In IEEE Trans. on Knowl. and Data Eng.18(12):1585-1599, 2006.

[13] U. M. Fayyad and K. B. Irani. Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning. In Proc.
13th International Joint Conference on Uncertainly in Artificial Intelli-
gence(IJCAI’93), pages 1022–1029, 1993.

[14] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher.
GreenGPS: a participatory sensing fuel-efficient maps application. In
Proc. MobiSys’10, pages 151–164, 2010.

[15] R. Goetschalckx, K. Driessens, and S. Sanner. Cost-sensitive parsimo-
nious linear regression. In Proc. 8th IEEE International Conference on
Data Mining (ICDM’08), pages 809–814, 2008.

[16] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

[17] C. Heij, A. Ran, and F. van Schagen. Introduction to Mathematical
Systems Theory: Linear Systems, Identification and Control. Birkhuser
Base, 2007.

[18] J.Han and M.Kamber. Data Mining: Concepts and Techniques, Second
Edition. Morgan Kaufman, 2006.

[19] S. Ji and L. Carin. Cost-sensitive feature acquisition and classification.
Pattern Recogn., 40:1474–1485, May 2007.

[20] L. Jiang et al. SenSearch: GPS and witness assisted tracking for delay
tolerant sensor networks. In Proc. 8th International Conference Ad-Hoc,
Mobile and Wireless Networks, pages 255 – 269, 2009.

[21] N. B. John, J. Heidemann, and D. Estrin. GPS-less low cost outdoor
localization for very small devices. IEEE Personal Communications
Magazine, 7:28–34, 2000.

[22] J.R.Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[23] I. Kononenko and S. J. Hong. Attribute selection for modelling. Future
Generation Computer Systems, 13(2-3):181 – 195, 1997.

[24] M. Kunter, C. Nachtsheim, J.Neter, and W.Li. Applied Linear Statistical
Models. McGraw-Hill, 2005.

[25] P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney. Active
feature-value acquisition for classifier induction. In Proc. 4th IEEE
International Conference on Data Mining (ICDM’04), pages 483 – 486,
2004.

[26] P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney. An
expected utility approach to active feature-value acquisition. In Proc.
5th IEEE International Conference on Data Mining (ICDM’05), page 4
pp., Nov. 2005.

[27] D. Niculescu and B. Nath. Dv based positioning in ad hoc networks.
Telecommunication Systems - Modeling, Analysis, Design and Manage-
ment, 22(1-4):267 – 280, 2003.

[28] J. B. Predd, S. R. Kulkarni, and H. V. Poor. Regression in sensor
networks: Training distributively with alternating projections. In CoRR,
vol. abs/cs/0507039, 2005.

[29] M. Rabbat and R. Nowak. Distributed optimization in sensor networks.
In Proc. IPSN’04, pages 20–27, 2004.

[30] N. Roy and A. Mccallum. Toward optimal active learning through
sampling estimation of error reduction. In In Proc. 18th International
Conf. on Machine Learning, pages 441–448, 2001.

[31] M. Saar-Tsechansky, P. Melville, and F. Provost. Active feature-value
acquisition. Manage. Sci., 55:664–684, April 2009.

[32] S. Santini and K. Roemer. An adaptive strategy for quality-based
data reduction in wireless sensor networks. In Proc. 3rd International
Conference on Networked Sensing Systems (INSS’06), 2006.

[33] V. S. Sheng and C. X. Ling. Partial example acquisition in cost-
sensitive learning. In Proc. 13th international conference on Knowledge
Discovery and Data Mining (KDD’07), pages 638–646, 2007.

[34] Y.-S. Shih. Families of splitting criteria for classification trees. Statistics
and Computing, 9(4):309 – 315, 1999.

[35] R. Stoleru, T. He, J. A. Stankovic, and D. Luebke. A high-accuracy,
low-cost localization system for wireless sensor networks. In Proc.
SenSys’05, pages 13–26, 2005.

[36] R. Stoleru, J. Stankovic, and S. Son. On composability of localization
protocols for wireless sensor networks. IEEE Network, 22(4):21 – 25,
2008.

[37] M. Tan. Csl: a cost-sensitive learning system for sensing and grasping
objects. In Proc. 1990 IEEE International Conference on Robotics and
Automation, pages 858 –863 vol.2, 1990.

[38] P. Tan, M. Steinbach, and V.Kumar, editors. Introduction to Data Mining.
Addison-Wesley, 2005.

[39] D. Tulone and S. Madden. PAQ: time series forecasting for approximate
query answering in sensor networks. In Proc. 3rd European Workshop
on Wireless Sensor Networks (EWSN’06), 2006.

[40] P. D. Turney. Cost-sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm. Journal of Artificial
Intelligence Research, pages 369–409, 1995.


