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Abstract—Bandwidth allocation in spectrum-congested wire-
less content delivery networks should be performed based on the
user’s Quality of Experience (QoE). The relationship between
QoE and network QoS is context- and user-dependent. We show
that modeling the user’s QoE introduces additional complexity
to the bandwidth allocation problem. While recent research has
proposed various ways in which complexity can be reduced, we
have observed that the optimality (w.r.t. QoE) of the system is also
reduced along with complexity. In this paper, the tradeoff between
complexity and optimality is investigated and methods to control
the tradeoff are proposed. A bandwidth allocation scheme for
three different system objectives, including fairness, is formulated.

I. INTRODUCTION

In today’s wireless networks, limited bandwidth is shared
between an increasingly large number of users. These users
are consuming content, and a certain level of user satisfaction
(QoE) is associated with the network conditions at the time
of consumption. Some of the factors affecting QoE are the
delay, data rate (not to be confused with “bandwidth”) and the
packet loss rate. These metrics are called the application layer
QoS metrics, QoSapp. Note that QoE also depends on content
specific metrics, such as video framerate and resolution, but
they cannot be modified by the network. Given the same
network link (characterized by QoSlink), each application can
experience a different delay, based on the size of the data
requested and the size of each packet. QoSlink is in turn
affected by a set of PHY layer quantities QoSPHY , such as
the spectral efficiency, bandwidth, and the modulation/coding
schemes. The amount of bandwidth allocated to the user, as
well as the modulation scheme, can be controlled at the central
base station or access point - as opposed to the SINR (of a
mobile user) for example.

It is essential to allocate bandwidth among users based
on their needs. Content is delivered over a wireless network,
and users consume this content on heterogeneous devices
with different screen sizes, for example. The content itself
is heterogeneous, e.g. varying from real time sport video to
movies to data downloads. Thus, a user perceives content
differently based on the viewing device and the type of the
content. That is, the equation relating QoE to QoSapp has
coefficients that differ among users, and between types of
content for the same user. This paper answers several key
questions: how can the QoE of a user be modeled in terms of
QoSapp metrics? If there are many users present, how should
each user’s QoE be optimized? How can fairness be ensured?
From a systems perspective, what are the tradeoffs that need
to be controlled? How feasible will an implementation of the
solution be? Can computational complexity be reduced, in
exchange for a reduction in QoE optimality?

The layout of this paper is as follows. First, we present
the system model and a motivating scenario, where bandwidth
is to be shared among two users. The QoE optimization
problem is formulated, and it is shown this problem can be
decoupled into two simpler subproblems - one of which is
channel independent and the other is user dependent. These
two subproblems are linked using a feasibility region Ψ that
represents constraints on QoSapp according to channel condi-
tions. In Section III-A, the decoupling technique is formalized,
and the Rate Allocation and Bandwidth Allocation problems
are formulated. Section IV shows how these two problems
can be solved under different conditions: an error free regime
and an error tolerating regime. Finally, Section V presents the
performance evaluation.

II. STATE OF ART

In this section, we present a survey of state of the art
methods for QoE optimization in wireless networks. Typical
spectral resources are bandwidth and power; most works pro-
pose and analyze joint power, subcarrier, and bitrate allocation
algorithms [1]. For OFDMA systems, the bits per OFDM
symbol is used in lieu of the bit rate. The phrase “subcarrier
allocation” in literature sometimes refers to the allocation of
a particular subcarrier to a user (based on frequency selective
fading characteristics), rather than determine the total number
of subcarriers to be assigned to a user (i.e., bandwidth alloca-
tion).

The authors of [2] propose a scheduling as well as re-
source allocation method for a CDMA system. The system
utility function is the sum of users’ utility functions, which
are assumed to be concave w.r.t. the per-user throughput; at
each scheduling instant, a rate vector is selected, so that its
projection onto the gradient of the system utility function is
maximized. [3] optimizes user QoE in wireless broadband
networks by adjusting the DL/UL subframe ratio, as well as
a priority based scheme for different traffic classes. Users are
assumed to have a minimum data rate requirement. In [4],
energy is saved and QoE is maximized in an OFDM system
with group based mobile users by shutting down sub-channels;
user QoE is related to throughput logarithmically. In [5], a
unifying optimization framework for the subcarrier allocation
problem (each subcarrier corresponds to a certain amount of
bandwidth) is presented and solved using a Nash bargaining
solution. [6] presents a theoretical framework for utility based
subcarrier assignment in an OFDM based wireless network - it
is shown that utility is eventually maximized if the aggregate
marginal utility is maximized at each epoch ([5]).

This work differs from the above corpus as follows: 1) we
consider bandwidth allocation and not power allocation; 2) the
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main focus of this paper is the computational complexity of
bandwidth allocation, and how it can be reduced; 3) QoE is
optimized instead of QoS, because each user perceives a QoS
vector differently; 4) the adopted user utility function (the multi
stimuli version of the IQX hypothesis) in our work depends
not only on the rate/throughput, but also on the link BER;
5) we analyze three different system objectives; maximizing
the average QoE, fairness, and equal QoE degradation. We
show that by tolerating a small BER (instead of forcing a low
BER by allocating more bandwidth/power or using a complex
code), spectral efficiency can be significantly improved, since
less bandwidth can be allocated at the same data rate to a
user. Conversely, computational complexity can be reduced by
allocating more spectral resources to ensure a low BER.

In our previous work [7], we proposed a genetic
algorithms-based solution for wireless systems, where the
set of modulation and coding schemes are pre-defined. A
single optimization problem was solved, unlike the problem
splitting approach adopted here. In this paper, the focus is
on computational complexity and how it can be reduced.
The optimization variables here are continuous, as opposed
to discrete in our previous work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The objective of this system is to optimize the users’ QoE
according to an objective defined by the network operator,
but parsimoniously (w.r.t. computation resources). Reducing
computational complexity is the key, especially in dynamic
operating environments, where there is mobility or where
the channel conditions change often. In order to achieve this
goal, we first need to know how a user’s QoE is mod-
eled and whether it depends on content, context, or network
related metrics. Once the QoE is modeled, we define the
QoE optimization problem and provide insight into how the
computational complexity can be reduced.

Network model: There are N users in the system (Fig-
ure 1). Each user i connects to an access point (AP). The
bandwidth at the AP is limited to W Hz, and user i is allocated
Wi Hz. The number of bits per PHY symbol of the link
between user i and the AP is ki, and Eb/N0 is denoted as
γi = SNRi/ki. Define the set of PHY layer QoS metrics as
QoSPHY = {Wi, ki}. The BER of the link ei is a function
Γ of ki and γi. Based on QoSPHY , the link between user
i and the AP can sustain a PHY layer data rate ri with a
Bit Error Rate (BER) ei. Define a set of link QoS metrics
QoSlink = {ri, ei}. The application run by user i uses packets
of size Bi bits, such that the Packet Error Rate (PER) is
pi = 1− (1−ei)

Bi . The effective data rate seen by the user at
the application layer, inclusive of the PER, is ri(1− pi). This
application regularly requests data of size Si, so the delay
experienced by the user i is di =

Si

ri(1−pi)
. To summarize:

ei = Γ(ki, γi); pi = 1− (1− ei)
Bi ; di =

Si

ri(1− pi)
(1)

QoE-QoS model: QoE and QoS are two distinct but related
quantities. A key difference is that QoS is measured using
technical, network-centric terms such as delay and jitter, but
QoE is measured using non-technical, user-centric terms, such
as acceptability and satisfaction. The IQX hypothesis ([8])
proposes a generic relationship between QoE and QoS. It states

that the change in QoE, for a change in QoS, depends on the
current level of QoE (akin to a stimulus-response analogy):

∂QoE

∂QoS
∝ −QoE =⇒ QoE = αe−βQoS +∆ (2)

Note that β > 0 for QoS metrics such as delay and packet
loss ratio (smaller is better), and β < 0 for data rate
(i.e., bigger is better). We adopt the multi-stimuli version
([9]) of the IQX hypothesis as the QoE-QoS model. The
authors of [9] extend the IQX hypothesis to include multiple
QoS parameters and show its applicability to video traffic
using multiple linear regression. Equation 2 can be linearized
as log(QoE) = log(α) − βQoS (∆ is omitted since it
is a scaling factor). For multiple QoS variables, we have
log(QoE) = a0 + a1QoS1 + · · · + anQoSn, so that QoE =
ea0ea1QoS1+···+anQoSn . We define the set of application level
QoS metrics as QoSapp = {QoS1, QoS2, . . . , QoSn}.

These QoS stimuli could be content related (e.g., video
frame rate) or network related (e.g., delay, jitter). Based on
experiments conducted in [10], [11], in this paper, we assume
that the QoS stimuli are network delay, packet error probability,
and data rate (i.e., QoSapp = {pi, di, ri}). Note that QoSapp

can be defined differently for different users and different types
of content. Similarly, the QoE can be measured using a variety
of metrics, but in this paper, we adopt the widely used and well
known Mean Opinion Score (MOS). Therefore, for each user
i, MOSi = ebi0+bi1pi+bi2di+bi3ri .

Define the set of constants QoEcoefs = [bi0, bi1, bi2, bi3].
We now provide two examples of how QoEcoefs can be ob-
tained. The authors of [10] provide equations that relate MOS
to d, p, r, for a file download: MOS = 4.836 · exp(−0.15d),
MOS = 5.5 · exp(−20p), MOS = 1.2 · ln(1 × 10−6r).
Link data rate varied from 0-10Mbps; however, 802.11n data
rates range from 0-200Mbps. To overcome this mismatch,
we increased the upper limit of the data rate to 200Mbps
by changing the coefficients. This step can be justified by
thinking of the “user” as an aggregating device to which
thousands of users are connected. The resulting equation is
MOS = 1.2 · ln(5 × 10−8r). Data points were extrapolated
using this set of equations and re-fit onto the multi-stimuli IQX
model using multiple linear regression. The resulting equation
with R2 = 0.9799 is:

MOS = e−6.8643p−0.10799d+1.1×10−8r (3)

A second QoE-QoS model can be found in [11]. Packet loss
rates were varied for four audio codecs: G.723.1.B which has
a capacity requirement of 6.4kbit/s, iLBC (15.2kbit/s), Speex
(24.6kbit/s), and G.711 (64kbit/s). As in the previous case,
these bit rates are much smaller than the 802.11n rates, so we
increased the bit rates a thousandfold. After extrapolating the
data, the following equation was obtained using multiple linear
regression with R2 = 0.94681:

MOS = e1.3629−1.5068p−0.10461d+3.5238×10−10r (4)

Architecture: The network model and the QoE-QoS
model, explained above, can be integrated into a single ar-
chitecture as follows. The Middleware (Figure 1) is a module
that runs on the user’s device. It is responsible for mapping the
user QoE to network QoS metrics by determining QoEcoefs.
The Scheduler (Figure 1) runs on the AP, and is responsible
for bandwidth allocation. First, it receives QoEcoefs from
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Fig. 1: The Middleware runs on the cloud user’s device
and builds the QoE-QoS model of the user as QoSapp. The
Scheduler calculates the optimal rate allocation vector QoSlink

and sends it to PHY, which computes the optimal bandwidth
allocation QoSPHY .

Set Members User Channel

QoEcoefs bi0, bi1, bi2, bi3 Dependent Independent

QoSapp pi, di, ri Dependent Dependent

QoSlink ri, ei Independent Dependent

QoSPHY Wi, ki Independent Dependent

TABLE I: The sets of quantities as defined in the system
model, and their dependence on the user and the channel.

all N users. Next, it queries the PHY module of the CBS
for a feasibility region Ψ, which represents system limitation
(e.g., the Shannon limit on channel capacity) given total
bandwidth W Hz and current channel conditions. Once the
Scheduler receives Ψ, it calculates an optimal set of network
QoS metrics QoS∗

app = {pi, di, ri} that maximize a given
system objective (Equation 5), subject to Ψ. Note that QoSapp

is user dependent (since it depends on Bi and Si), but for
a given user, they can be converted to user independent
network link QoS metrics QoSlink. So, QoSapp, which is
both user and channel dependent (Table I), is converted to
a set of link QoS metrics QoSlink = {ri, ei}, which are
user independent but channel dependent (Table I). The PHY
module receives QoSlink from the scheduler and proceeds
to calculate QoSPHY = {Wi, ki}, where rate ri = Wiki
and BER ei can be achieved with bandwidth Wi and current
channel conditions, such that

∑

Wi = W (Equation 6).

A. Problem Formulation and Decoupling

The main task of the AP is to allocate spectral resources
(i.e., calculate QoSPHY = {Wi, ki}), such that the QoE of
all the users is optimized in some way. This is called the QoE
Optimization Problem. Assuming that the symbol rate for user
i relates to the bandwidth Wi such that ri = Wiki,

Problem 1. The QoE Optimization Problem

maximize
QoSPHY

fOBJ(QoE1, QoE2, . . . , QoEN ) (5)

subject to
∑

Wi = W (6)

ki < fCAP (ki) (7)

where ri = Wiki (8)

Here, fCAP in Equation 7 is a capacity constraint, which
limits the data rate based on channel conditions or system
limitations or both. An example for fCAP is the Shannon limit
on channel capacity fCAP (ki) = log2 (1 + kiγi).

We notice that the optimization variable QoSPHY is
channel dependent and user independent (Table I), while the
objective function involves the quantities QoEi, which are
channel independent but user dependent. Therefore, every time
the channel conditions change, bandwidth allocation will have
to be performed. However, QoSapp can be expressed in terms
of the network link QoS metrics QoSlink = {ri, ei}, which are
user independent (Table I) - i.e., ri, ei do not involve Bi, Si or
QoEcoefs but are channel dependent (meaning, ri, ei depend
on QoSPHY , which in turn depends on W and SNRi). This
means that the optimal values of QoSapp are independent of
the channel conditions. When the channel conditions change,
only QoSPHY need to be re-calculated, thus reducing the
computational complexity.

In this spirit, we propose to split Problem 1 into two sub-
problems. The two problems are “linked” using the feasibility
region Ψ, which represents some system limitation on QoSapp

given channel conditions Wi and SNRi. The size of the
feasibility region controls the “gap” of optimality that is
traded off for reduced computational complexity. Whenever
channel conditions change, Problem 1 can be solved with high
complexity, or only QoSPHY can be calculated (as one of the
two sub-problems) for a small reduction in optimality. Another
way complexity can be reduced is by eliminating variables.
For example, more spectral resources can be allocated to
ensure that ei ≅ 0, thus eliminating the ei variable from
the optimization problem, and avoiding the complex modeling
between BER and SNR. This is the key idea in this paper and
is illustrated in the next few paragraphs.

The Rate Allocation (RA) Problem, the first of the two
sub-problems, which is solved by the Scheduler, is defined as
follows:

Problem 2. The Rate Allocation (RA) Problem

maximize
QoSlink

fOBJ(QoE1, QoE2, . . . , QoEN ) (9)

subject to
∑

gj(QoSapp) ≤ 0 (10)

Here, instead of QoSPHY , QoSlink = {ri, ei} is the
optimization variable. The search space for QoSlink is limited
by Ψ. By specifying Ψ analytically, exhaustively listing all
possible combinations of {ri, ei} is avoided; this set can be
very large depending on N and W . The objective (Equa-
tion 9) is designated by the network administrator. Constraints
gj(QoSapp) represent the feasibility region Ψ.

A candidate solution QoS∗
link is calculated by the Sched-

uler as a result of solving the Rate Allocation Problem. This
result is sent to the PHY module (Figure 1), which is then able
to solve the Bandwidth Allocation (BA) Problem:

Problem 3. The Bandwidth Allocation (BA) Problem

minimize
QoSPHY

∑

[

(bi3(ri − r∗i ))
2 +

(

bi1
Bi

(ei − e∗i )

)2
]

(11)

subject to
∑

Wi = W (12)

where ei = Γ(ki, γi) = Γ(ki, SNRi/ki) (13)

To recap, the system bandwidth is limited to W Hz (Equa-
tion 12). By solving Equation 11, the PHY module obtains a
set of Wi, ki. The hardware is then configured appropriately
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M=2k γ (dB) Min. SNR (dB) Min. γ (dB)

4 12.5495 4.7712 1.7609

16 16.4608 11.7609 5.7403

64 20.8719 17.9934 10.2119

256 25.6412 24.0654 15.0345

TABLE II: The minimum required γ for a BER of 10−9 is
shown in column 2, and the minimum required γ at a spectral
efficiency of η = k is shown in column 4.

such that user i is allotted Wi using modulation scheme ki.
We now discuss how these problems can be solved, and under
what conditions.

IV. SOLUTION

In this section, solutions to the RA and BA problems
are presented. The effect of using a channel code upon γi
is modeled for M-QAM modulation. Then, the solutions in
the error free and error-tolerating regimes are presented. The
key idea is that by forcing ei ≅ 0, some of the optimization
variables can be eliminated, leading to reduced computational
complexity in return for a small reduction in optimality. An
expression is derived for ki when ei ≅ 0, and this expression
is used as a constraint in the BA problem. Three different
objectives are analyzed for RA: maximizing the average MOS
of all users, fair resource allocation among users such that
MOS are equalized, and enforcing equal MOS degradation
among users when the available bandwidth decreases.

Channel coding: We assume that (as long as ri <
Wi log2(1+SNRi)) there exists a channel code that, irrespec-
tive of the modulation scheme, provides a coding gain that is
inversely proportional to the number of bits per symbol: i.e.,
at higher k, the channel code provides a smaller coding gain.
The system is forced to reduce k in order to reduce ei - but
doing so also reduces ri when Wi is limited. Thus a realistic
tradeoff is setup. Consider square M-QAM (QPSK for M = 4)
where k = log2 M is even:

ei =
4(
√
2ki − 1)

ki
√
2ki

·Q
(
√

γi ·
3ki

(2ki − 1)

)

The required Eb/N0 values to achieve BER of 10−9 are shown
in column 2 of Table II. Column 3 shows the minimum SNR
required to be able to use the MQAM modulation scheme, and
column 4 shows the minimum required Eb/N0 at a max spec-
tral efficiency of k. We can see that the required coding gain
is about 11dB = 12.5893 in each case. Therefore, the coding
gain (as a ratio) provided by the channel code, when used in
conjunction with 2k-QAM, is assumed to be 12.5893/k. The
new equation for the BER of M-QAM, assuming the existence
of the above code is:

ei =
4(
√
2ki − 1)

ki
√
2ki

·Q
(
√

12.5893

k
× γi ×

3k

(2k − 1)

)

(14)

A. Error-free Regime

Problem 1 can be decoupled into two sub-problems in the
error free regime, where pi = ei ≅ 0. Thus,

ln(MOSi) = bi0 + bi1 · 0 + bi2
Si

ri(1− 0)
+ bi3ri (15)

ln(MOSi) = ai −
bi
ri

+ ciri , bi, ci, ri > 0 (16)

where ai = bi0, bi = −bi2Si, ci = bi3. Typically, MOS
decreases with increasing delay and decreasing data rate, and
Si > 0. Therefore, bi, ci, ri > 0. The Scheduler determines
QoSlink = r = [r1, r2, . . . , rn]. The Rate Allocation Problem
now becomes:

maximize
r

fOBJ(r) (17)

subject to
∑

δiri = W (18)

where δi =
1

log2(1 + SNRi)
(19)

Equation 19 represents the feasibility region Ψ. The solution r∗

is sent to the PHY module, which allocates spectral resources
in order to effect the required data rate. In the Bandwidth
Allocation Problem, the PHY module determines a feasible
data rate vector r̂:

minimize
r̂

||r̂ − r∗||2 (20)

subject to
∑

Wi = W (21)

ei = 0 (22)

The first and second derivatives of MOSi can be obtained

in closed form: MOS′
i = MOSi

(

ci +
bi
r2i

)

and MOS′′
i =

MOSi

(

ci +
bi
r2i

)2

−MOSi
2bi
r3i

. A test of convexity for MOSi:

MOS′′
i > 0 over (0,∞) =⇒ c2i r

4+2bicir
2−2bir+b2i > 0.

If the function QoEi is convex, then fOBJ may be convex
(e.g., fOBJ =

∑

QoEi/N ) - this fact can be used to reduce
complexity by obtaining closed form expressions for Hessian
elements during optimization.

1) Maximizing the Average MOS: In this scenario, fOBJ

returns the average MOS:

maximize
r

fOBJ(r) =
1

N

N
∑

i=1

e
ai−

bi
ri

+ciri (23)

subject to c(r) =

N
∑

i=1

δiri = W

If fOBJ is concave, then the above problem becomes a concave
maximization problem. It is useful to examine whether the
Jacobian and the Hessian are sparse, since linear algebra
computations can be sped up.

∇if(r) =
MOS′

i

N
∇ic(r) = δi

∇2
ijf(r) =

{

MOS′′

i

N if i = j

0 otherwise
∇2

ijc(r) = 0

Hij(r, λ) = MOS′′
i /N if i = j, 0 otherwise

Thus, there are only N non-zero elements in the Hessian.

2) Fair Rate Allocation: The ratio of standard deviation to
mean is minimized, to ensure equal MOS among all users.

min
r

f(r) =
σ(MOS1,MOS2, . . . ,MOSn)

µ(MOS1,MOS2, . . . ,MOSn)
(24)

s.t. c(r)

N
∑

i=1

δiri = W

4
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The derivatives are as follows:

σ2 =
1

N − 1

∑

MOS2
i − 1

N(N − 1)

(

∑

MOSi

)2

f(r) =

√

(N − 1)−1
∑

MOS2
i −N−1(N − 1)−1(

∑

MOSi)2

N−1
∑

MOSi

Let X =
∑

MOSi and Y =
∑

MOS2
i

f(r) =

√

N2Y

(N − 1)X2
− N

N − 1

∇if =
1

2f(r)

N2

N − 1

2X ·MOSi ·MOS′
i − 2Y ·MOS′

i

X3

The rest of the equations are omitted for brevity - equations
concerning c(r) are identical to the previous section.

3) Equal MOS Degradation: Suppose that the channel con-
ditions have degraded, and the system can no longer provide
users with the required data rate. Total available bandwidth
has reduced to ǫW, 0 < ǫ < 1, and each user’s data rate has
to be reduced such that the MOS is reduced equally. Let the
previous MOS for user i be MOSi. Our task is to calculate
MOSi such that the decrease in MOS is equal for all users,
while still adhering to the bandwidth constraint:

min
r

f(r) =
σ{MOSi −MOSi}

µ{MOSi}
(25)

s.t. c(r) =
N
∑

i=1

δiri = ǫW

The analysis for this case is very similar to the previous case
(save for c(r) = ǫW instead of c(r) = W ), and is thus omitted
for brevity.

4) Bandwidth Allocation: In order to solve Problem 20,
we need an equation that relates the data rate to the allocated
bandwidth. Typically these are two independent variables, but
a constraint in the high SNR regime is that the BER is zero.
Using Equation 14:

ei =
4(
√
2ki − 1)

ki
√
2ki

·Q
(√

12.5893× γi × 3

(2ki − 1)

)

Q(x) =
1

12
e−

1
2x

2

+
1

4
e−

2
3x

2

Let y = e
12.5893γi×3

(2ki−1)

=⇒ ei =
4(
√
2ki − 1)

ki
√
2ki

(

1

12
y−1/2 +

1

4
y−2/3

)

In the error free regime, BER should be zero for practical
purposes:

ei ≅ 10−9 =⇒ (
1

12
√
y
+

1

4 3
√

y2
) ≅ 10−9 (26)

Solving, we obtain ln(y∗) = 36.5, using MATLAB’s
vpasolve for example. Now,

ln y∗ > 36.5 =⇒ SNRi − 0.9664ki(2
ki − 1) > 0 (27)

We now cast the optimization problem as follows, with N +1
constraints, enabling us to calculate optimal ki:

min
Wi,ki

f(w, k) =
N
∑

i=1

(Wiki − r∗i )
2 (28)

s.t. c1(w, k) =
∑

Wi = W (29)

ci+1(w, k) = SNRi − 0.9664ki(2
ki − 1) > 0 (30)

limit 1 ≤ ki < log2(1 + SNRi) (31)

We have:
∂f

∂wi
= 2ki(Wiki − r∗i ) and

∂f

∂ki
= 2Wi(Wiki − r∗i )

∂c1
∂wi

= 1 and
∂c1
∂ki

= 0
∂2f

∂w2
i

= 2k2i and
∂2f

∂k2i
= 2W 2

i

∂2f

∂ki∂wi
=

∂2f

∂wi∂ki
= 4Wiki − 2r∗i

∂ci+1

∂ki
= −0.9664(2ki − 1)− 0.6698ki2

ki

∂2ci+1

∂k2i
= −1.3397 · 2ki − 0.4643ki2

ki

All other terms are zero - making the Hessian and Jacobian
sparse.

B. Error-Tolerating Regime

In this section we analyze the case when pi 6= 0, ei 6= 0.
Problem 1 can be decoupled when ki is fixed, but not other-
wise.

Fixed ki: If ki is known, then ei can be determined using
Equation 14. Let e∗i denote the value of ei at ki = k∗i . The
MOS equation becomes:

MOSi = e
bi0+bi1(1−(1−e∗i )

B
i )+

bi2Si

ri(1−e∗
i
)B
i

+bi3ri

This equation is identical to the equation for the “error-free”
regime, with ai = bi0 + bi1(1 − (1 − e∗i )

B
i ), bi = −bi2Si

(1−e∗i )
B
i

and ci = bi3. Thus, the analysis from the previous section
is applicable here, and r∗ can be obtained. The bandwidth
allocation problem becomes:

minimize
Wi

N
∑

i=1

(Wik
∗
i − r∗i )

2 (32)

subject to
∑

Wi = W (33)

Variable ki: The feasibility region Ψ represents constraints
on ri, ei, and ei depends on ki. Therefore, Ψ cannot be
expressed independent of ki. Because the Rate Allocation
problem is designed to be channel independent, decoupling
Problem 1 is not possible in this scenario. The QoE Optimiza-
tion problem is posed as follows:

maximize
Wi,ki

fOBJ(MOS1,MOS2, . . . ,MOSN ) (34)

subject to
∑

Wi = W (35)

limit ki < log2 (1 + kiγi) (36)

where ri = Wiki. Solving this problem requires the most
computational resources, but is optimal.

V. EVALUATION

In this section, we present the performance evaluation of
the RA and BA problems in the error free (RA,BA) and
error tolerating regimes (Opt). Results were obtained using
simulation, with the KNitro suite of nonlinear optimization
algorithms. While the first derivatives for all problems were
provided analytically, the Hessians for only RA and Opt
were estimated using a quasi-Newton BFGS method. For each
optimization problem, results were obtained over 50 randomly
generated initial start points. The default number of users is 4.
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Fig. 2: Maximizing the average MOS: (a) comparison of RA,
BA, and OPT; (b) run time for (a); (c) comparing the results
of BA based on r∗ obtained at W = 50MHz to RA+BA and
Opt at W = 10 . . . 40MHz; (d) run time for (c)

Since QoEcoefs were obtained for only two users as discussed
previously, additional users were created by duplicating the
profile of a user chosen from the two. SNRi was 40dB, Si

was 60 Mbits, and Bi was 4000. It is worthwhile to note
that in a separate experiment, computing the Q function or
its first/second derivatives, frequently seen in the expression
for H(x, λ), introduced large computational overhead, taking
up almost 30% of the total computation time. This cost can be
avoided for the RA and BA methods, since additional spectral
resources are used to ensure ei = 1E-9 and thus eliminating
the Q function (and introducing a simpler constraint instead).

Maximizing Average MOS: The results for the objective
of maximizing the average MOS of all users is shown in
Figure 2. The performance is compared across three variants:
Rate Allocation in the error free regime (RA), Bandwidth
Allocation (BA) based on r∗ from RA, and optimization in the
error-tolerating regime (Opt) with non-fixed ki. As expected,
mean MOS increases with increasing bandwidth (Figure 2a).
The calculated mean MOS is high (RA µ), because the
feasibility region is determined by the Shannon limit only. The
realized mean MOS is lower (BA µ), since spectral resources
are spent on ensuring that the BER is < 10−9, and also because
the bandwidth is limited. The optimal mean MOS (Opt µ) is
in between the previous two values, because it allows a small
BER in exchange for lesser bandwidth. σ of resulting MOS
from these three methods is not shown, because only the mean
is maximized in the objective. However, this performance of
Opt comes at a cost (Figure 2b). Solving RA or BA alone
takes about a tenth of the time as Opt - but note that both
RA (which yields QoS∗

link) and BA (which uses QoS∗
link to

yield W ∗, k∗) need to be solved in order to obtain a W ∗ and
k∗. We see that Opt takes lesser time at lower bandwidths, but
takes about 33% more time at higher bandwidths. Therefore,
it is preferable to use RA+BA at lower bandwidths (BA µ vs
Opt in Figure 2a), but Opt has higher average MOS at higher
bandwidths, with higher computation cost.
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Fig. 3: Fair Resource Allocation (minimizing σ/µ): (a) com-
parison of RA, BA, and OPT; (b) run time for (a); (c) compar-
ing the results of BA based on r∗ obtained at W = 50MHz
to RA+BA and Opt at W = 10 . . . 40MHz;(d) run time for (c)

However, the RA problem need not be solved every time
the bandwidth changes, thus saving on computation. Figure 2c
shows the effect of solving only the BA problem, based on a
r∗ obtained for a Ψ corresponding to W = 50MHz (ǫ = 1
on the X axis). The lines for Opt and RA+BA are identical
to the corresponding lines in Figure 2a. We see that BA only
incurs a small penalty at lower bandwidths and is identical
to RA+BA at ǫ = 1, as expected. Therefore, it is possible to
solve only BA and use a previously solved RA at a different
bandwidth. Additionally, the computation time for BA is very
low (Figure 2d), when compared to RA+BA and Opt. Clearly,
Opt always has the highest mean MOS, but also the highest
computation time. Therefore, it is shown that decoupling the
QoE Optimization problem is beneficial and leads to reduced
computational complexity in exchange for a small reduction
in optimality.

Fair Resource Allocation: The results for minimizing σ/µ
of users’ MOS are shown in Figure 3. RA generates a vector r∗

with the highest µ and a low σ (RA µ and RA σ in Figure 3a).
However, the realized MOS values have a lower µ and higher
σ (BA σ), since the BA problem uses a least squares approach.
Compared to the previous section (maximizing µ), increasing
ri does not guarantee a better objective value (lower σ). Note
that the objective here is the ratio σ/µ and not σ only. Opt
has the lowest ratio - primarily because of a low σ rather
than a high µ (Opt µ). Note that this value of µ is lesser
than the value in Figure 2a. As before, RA < Opt < BA
for performance when σ/µ is compared. However, Opt needs
comparable resources (Figure 3b) when minimizing σ/µ as
opposed to maximizing

∑

µ. In spite of the complexity of
the objective function as well as the CPU cycles required
to compute the Jacobian and the gradient at each iteration,
the CPU time in practice also depends on the choice of the
initial points at each iteration. Opt needs almost twice as much
resources, when compared to RA+BA (Figure 2b).
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Fig. 4: Equal MOS degradation when available bandwidth is
reduced from W = 50MHz to 10 . . . 40MHz, based on MOS
obtained at W = 50MHz using Opt: (a) σ of ∆MOS for RA,
BA, Opt; (b) run time for (a).
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Fig. 5: Effect of increasing the number of users when available
bandwidth is W = 50MHz: (a) µ of MOS for RA, BA, Opt;
(b) run time for (a)

As before, we examine the effect of performing only BA,
based on r∗ at a different bandwidth (50MHz as above).
Figure 3c shows a large deviation of BA from the expected
value (σ = 0). BA yields only a slightly higher σ as compared
to RA+BA, while Opt has the best performance with σ ≈ 0.
But BA has the lowest complexity (Figure 3d), lower than
RA+BA, and much lower than Opt. Given that BA increases
σ only by a small amount, performing BA only is a feasible
choice (comapred to RA+BA) when performing fair resource
allocation with emphasis on low complexity.

Equal Degradation: The results for equal MOS degrada-
tion are shown in Figure 4a. Here, the performance metric is
σ{∆MOS}
µ{MOS} , where ∆MOS = MOSi − MOSi. The vector

of previous MOS values MOSi was obtained using Opt at
W = 50MHz with the objective of maximizing the average
MOS. We can see that RA and Opt always ensure that the ratio
σ/µ is the smallest, but BA introduces a gap from optimality.

Since MOSi was obtained using Opt and not RA+BA (at
ǫ = 1), the σ for RA+BA is non-zero at ǫ = 1. The absolute
MOS values are not shown in Figure 4a, but RA+BA was able
to obtain a higher MOS (but also disproportionately higher

σ{∆MOS}), making the ratio
σ{∆MOS}
µ{MOS} smaller for Opt. As

always, this performance comes at a price, as seen in Figure 4b.
If the network operator is willing to tolerate a small non-
negligible variance in user MOS degradation, instead of zero
variance, then the RA+BA solver can be used since it has a
higher average MOS, less uniform degradation, but also greatly
reduced complexity.

Scalability: The results for increasing the number of users
is shown in Figure 5, where the objective was to maximize the

average MOS. As expected, average MOS decreases with an
increase in the number of users (Figure 5a), but tends to flatten
after a certain number of users (˜10 users). Opt always achieves
a higher MOS than RA+BA. We can see that the computation
time increases almost quadratically with N (Figure 5b), as
compared to linear for RA and BA. This is because of the
number of non-zero elements in the respective Hessians. RA
has a N × N Hessian with N non-zero elements; BA has a
2N × 2N Hessian with 2N non-zero elements; but Opt has a
2N × 2N Hessian with computationally complex expressions
involving the Q function. This complexity worsens as the
number of users increases.

VI. CONCLUSIONS

In this paper, we have formulated the QoE optimization
problem over a one hop wireless content delivery network,
and shown that computation complexity can be traded for
optimality if certain conditions are satisfied. The QoE of a
user is mapped to network QoS metrics using the multi-stimuli
IQX model. The problem is decoupled into two sub-problems
linked together by a feasibility region Ψ. When the available
bandwidth changes, only one of the two sub-problems needs
to be solved for a slightly less optimal bandwidth allocation.
Similarly, complexity can also be reduced by allocating addi-
tional spectral resources to ensure that the link BER is zero for
practical purposes, thus avoiding complex theoretical modeling
of the link BER for a given modulation scheme. Results are
obtained using simulation and verified that computation can
indeed be traded off for optimality.
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